If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2+4k-15=0
a = 6; b = 4; c = -15;
Δ = b2-4ac
Δ = 42-4·6·(-15)
Δ = 376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{376}=\sqrt{4*94}=\sqrt{4}*\sqrt{94}=2\sqrt{94}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{94}}{2*6}=\frac{-4-2\sqrt{94}}{12} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{94}}{2*6}=\frac{-4+2\sqrt{94}}{12} $
| 14=11+w-8•6 | | -10x=7+4x | | x/1.21+2x(1.33)=1000 | | 12+9z-5=9z+7 | | 5x+10=155 | | 2(8n-4)=4(2n+6) | | 3^(4x-5)=5^2x+1) | | 6561÷x=2187 | | 1.2y-20.5=0.5y-11.5 | | 23=5(.5x+1)-4 | | 8y-9=6y+4 | | 15x+13x=84 | | 3p+3=15 | | k-22/6=10 | | t/10-4=1 | | -16+2x=-18 | | x+2/2/7=4 | | 98=2(g+32) | | (9-v)(3v-8)=0 | | ((5w/2w+8)-(1/w+4))=1 | | 5(b+11)=90 | | 1.03x=4.12 | | 1/7r+1/6r=13 | | 3y+7=-2(y-8)+1 | | p-20=13 | | 6.25m=106.25 | | -15+6n=-9 | | -5x17=33 | | m-20.05=3.05 | | 5w^2+18w-9=0 | | z/2.75=4 | | 12+y/6=24-5 |